Emission Reduction Benefit Metrics:Tools for Decision Making & Project Evaluation

Amy Zimpfer, P.E.

Associate Director – Air Division

US EPA, Region 9

California Energy Commission Integrated Energy Policy Report Workshop June 12, 2014

Presentation Topics

- 1) US EPA Rulemaking & Benefit Metrics
 - a) Regulatory Impact Analysis
- 2) Social Cost of Carbon
 - a) Monetary Benefits of CO₂ Reduction
- 3) Diesel Emissions Quantifier (DEQ) Health Benefits Module
 - a) Monetary Benefits of PM2.5 Reduction

Background – Regulatory Impact Analysis at EPA

- EPA has conducted credible, science-based regulatory impact analyses (RIA) for many years for national rulemakings
 - RIA's quantify monetized costs and benefits
- Monetized benefits typically far outweigh the costs
 - 2002 to 2012, EPA's rulemakings have yielded between \$112-\$638 billion in annualized benefits compared to \$30-\$37 billion in annualized costs (source: OMB, 2014; http://www.whitehouse.gov/sites/default/files/omb/inforeg/2013 cb/2013 cost benefit report-updated.pdf)
 - Human health benefits include reductions in premature mortality risk and a number of reduced morbidity impacts
- Benefits from EPA's National Clean Diesel rulemakings are expected to outweigh costs by 18-to-1 by 2030
 - Includes regulations on light and heavy duty vehicles, locomotive and marine engines, and ocean-going vessels

Social Cost of Carbon (SCC)

- Purpose The SCC is an estimate of the economic damages (or damages avoided) associated with a small change in CO₂ emissions (e.g., 1 MT in a given year).
- Application Used to estimate the global climate benefits of federal rulemakings (e.g., EPA/DOT GHG & CAFE standards).

Source: US EPA Social Cost of Carbon (2013) - http://www.epa.gov/climatechange/EPAactivities/economics/scc.html

SCC (continued)

Methodology

- Damage Estimate Future global climate change damages including: changes in net agricultural productivity, human health and property damages from increased flood risk.
- Emissions Timing Year of CO₂ release/reduction key to impact/benefit estimation as it is based on the present value of climate damages over time.
- Discount Rate Estimates based on 5, 3, & 2.5% discount rates and one based on the 95th percentile from all SCC models at a 3% discount rate, (to represent the potential for higher-than-average damages).
- Limitations
 - Very likely underestimates damages due to incomplete capture of catastrophic & non-catastrophic impacts;
 - Treatment of adaptation & technological change;
 - Uncertainty in the extrapolation of damages due to high temperatures;
 - Assumptions regarding risk aversion.

Source: US EPA Social Cost of Carbon (2013) - http://www.epa.gov/climatechange/EPAactivities/economics/scc.html

Example: SCC Values

The table below summarizes the four SCC estimates in certain years.

Social Cost of CO₂, 2015-2050 ^a (in 2011 Dollars)

	Discount Rate and Statistic					
Year	5% Average	3% Average	2.5% Average	3% 95 th percentile		
2015	\$12	\$39	\$61	\$116		
2020	\$13	\$46	\$68	\$137		
2025	\$15	\$50	\$74	\$153		
2030	\$17	\$55	\$80	\$170		
2035	\$20	\$60	\$85	\$187		
2040	\$22	\$65	\$92	\$204		
2045	\$26	\$7 0	\$98	\$220		
2050	\$28	\$76	\$104	\$235		

^a The SCC values are dollar-year and emissions-year specific.

Diesel Emission Quantifier (DEQ) PM2.5 Monetary Health Benefits

- Purpose DEQ Health Benefits Module uses "benefit-per-ton" (BPT) values to estimate the monetized health benefits of diesel PM2.5 emission reduction options including: exhaust aftertreatment, engine replacement and/or fuel switching.
- Application Used to evaluate the benefits of Diesel Emissions Reduction Act (DERA) grant proposals and selected projects.

Diesel PM2.5 Health Benefits (cont.)

Methodology

- Data Sources BPT based on data derived from National Emissions Inventory (NEI), National Air Toxics Assessment (NATA), and the Environmental Benefits Mapping & Analysis Program (BenMAP).
- Benefit Valuation BPT values based on avoided incidences of:
 premature mortality, chronic & acute bronchitis, upper & lower
 respiratory symptoms, asthma exacerbation, nonfatal heart attacks,
 hospital admissions, emergency room visits, work loss days and
 minor restricted-activity days.

- Limitations

- Benefits can only be distributed in up to five counties per project.
- Results only available for counties within the contiguous 48 states.
- Considered inadequate for SIP planning or credit calculation purposes due to a range of uncertainties.

Example: On-Highway PM2.5 Benefits

County	State	2000 Population	Emissions input (tons/yr)	County area (hectares)	Benefit values (\$/ton)
Inyo	California	17,945	10	10,000	89,000
Alpine	California	1,208	0.57	730	153,000
Sierra	California	3,555	1.3	960	160,000
Mariposa	California	17,130	4.3	1,500	460,000
San Francisco	California	776,733	260	47	2,500,000
Orange	California	2,846,289	400	800	2,900,000

Emission Reduction Benefit Metrics: Tools for Decision Making & Project Evaluation

For more information, contact:

Amy Zimpfer, P.E.
Associate Director - Air Division - US EPA, Region 9
415-947-4146 / <u>zimpfer.amy@epa.gov</u>

Ben Machol, P.E.

Manager - Clean Energy & Climate Change Office - US EPA, Region 9

415-972-3770 / machol.ben@epa.gov

Ken Davidson

Environmental Scientist - Air Toxics, Radiation & Indoor Air Office - US EPA, Region 9 415-972-3633 / davidson.ken@epa.gov

John Mikulin

Specialist - Clean Energy & Climate Change Office - US EPA, Region 9 415-972-3956 / mikulin.john@epa.gov